4  変数へのアクセス

# パッケージの呼び出し
pacman::p_load(tidyverse,
               haven,
               janitor,
               here)
# データの読み込み
d <- read_dta(here("data","raw","u001.dta"))

# A tibble: 1,000 × 72と表示されており,1 これはデータが1000行72列から構成されていることを示している. これは社会調査の場合,1000のケース(対象者)と72の変数からなるデータであることを意味する.

では変数のひとつである出生年ybirthについてみていきたい.dというデータの中に,ybirthという変数はあるが,ybirthとそのまま入力してもobject 'ybirth' not foundといったエラーがでてくる.

ybirth

これはybirthという変数はdというデータの中にあるからである. データの中の変数にアクセスするためにはデータ名$変数名のようにする.

d$ybirth
   [1] 1976 1972 1975 1974 1978 1984 1976 1975 1985 1972 1974 1973 1984 1972
  [15] 1985 1982 1984 1980 1972 1978 1982 1978 1979 1975 1973 1975 1977 1973
  [29] 1983 1976 1983 1977 1978 1978 1975 1986 1986 1975 1980 1981 1977 1984
  [43] 1982 1976 1975 1978 1977 1979 1986 1984 1972 1983 1976 1974 1974 1985
  [57] 1979 1986 1981 1986 1983 1980 1983 1981 1976 1978 1974 1977 1986 1985
  [71] 1985 1977 1974 1976 1983 1985 1973 1986 1973 1982 1980 1973 1983 1980
  [85] 1983 1979 1974 1972 1979 1985 1976 1973 1985 1985 1973 1978 1975 1983
  [99] 1980 1981 1979 1981 1982 1972 1980 1973 1976 1980 1984 1985 1979 1986
 [113] 1975 1986 1983 1974 1979 1972 1981 1974 1973 1980 1980 1981 1973 1972
 [127] 1980 1978 1980 1972 1984 1972 1982 1978 1977 1972 1984 1985 1983 1974
 [141] 1979 1984 1974 1983 1976 1976 1977 1984 1974 1976 1972 1986 1980 1981
 [155] 1975 1973 1986 1975 1981 1985 1983 1984 1983 1974 1980 1981 1976 1977
 [169] 1973 1974 1982 1973 1972 1983 1978 1974 1985 1976 1977 1983 1977 1973
 [183] 1982 1972 1983 1978 1972 1975 1974 1985 1974 1981 1974 1974 1986 1980
 [197] 1974 1977 1973 1979 1986 1979 1977 1976 1975 1985 1978 1975 1973 1978
 [211] 1976 1984 1974 1977 1973 1980 1976 1981 1977 1986 1981 1986 1981 1978
 [225] 1979 1972 1984 1973 1977 1981 1979 1979 1984 1984 1973 1973 1977 1973
 [239] 1972 1978 1977 1981 1984 1981 1972 1981 1976 1977 1985 1986 1983 1981
 [253] 1985 1973 1976 1978 1977 1981 1973 1981 1978 1976 1972 1973 1981 1972
 [267] 1980 1975 1976 1973 1983 1974 1973 1985 1980 1976 1983 1983 1984 1985
 [281] 1975 1983 1981 1972 1986 1984 1972 1972 1984 1981 1974 1984 1979 1974
 [295] 1984 1972 1974 1978 1985 1972 1986 1976 1973 1977 1975 1983 1978 1976
 [309] 1978 1976 1979 1976 1976 1973 1982 1982 1973 1986 1974 1986 1975 1976
 [323] 1976 1979 1981 1981 1977 1985 1976 1972 1975 1976 1980 1981 1979 1973
 [337] 1978 1974 1975 1984 1976 1973 1981 1981 1979 1973 1981 1978 1975 1977
 [351] 1976 1975 1976 1986 1986 1986 1979 1985 1978 1974 1980 1978 1976 1975
 [365] 1984 1983 1979 1985 1985 1984 1981 1976 1974 1981 1983 1973 1977 1975
 [379] 1977 1986 1973 1976 1972 1981 1985 1985 1981 1981 1980 1984 1975 1974
 [393] 1986 1979 1974 1977 1975 1983 1977 1982 1975 1986 1983 1975 1986 1981
 [407] 1974 1983 1972 1985 1980 1979 1976 1974 1977 1972 1985 1975 1979 1980
 [421] 1986 1978 1976 1980 1974 1985 1976 1977 1977 1980 1977 1984 1981 1983
 [435] 1982 1983 1981 1974 1980 1983 1975 1983 1972 1985 1980 1981 1972 1985
 [449] 1981 1977 1976 1976 1984 1976 1972 1983 1986 1983 1976 1981 1981 1983
 [463] 1976 1975 1982 1977 1975 1977 1983 1979 1974 1975 1984 1974 1972 1978
 [477] 1972 1984 1981 1972 1981 1974 1985 1972 1977 1972 1981 1977 1981 1977
 [491] 1975 1973 1978 1972 1973 1986 1985 1985 1972 1976 1979 1972 1972 1973
 [505] 1975 1973 1986 1980 1975 1975 1982 1986 1985 1979 1977 1981 1977 1978
 [519] 1980 1983 1983 1972 1984 1972 1983 1984 1979 1976 1986 1984 1978 1977
 [533] 1983 1974 1977 1973 1980 1980 1973 1982 1975 1974 1973 1977 1981 1972
 [547] 1974 1973 1983 1980 1977 1980 1973 1978 1984 1983 1986 1974 1985 1977
 [561] 1980 1983 1977 1984 1975 1973 1984 1977 1983 1982 1985 1980 1973 1977
 [575] 1973 1973 1979 1975 1982 1985 1982 1982 1977 1984 1974 1982 1978 1974
 [589] 1978 1986 1981 1978 1975 1975 1972 1973 1974 1986 1972 1985 1973 1975
 [603] 1981 1979 1975 1977 1976 1986 1977 1985 1974 1984 1976 1986 1985 1972
 [617] 1973 1972 1985 1976 1981 1986 1978 1974 1977 1980 1978 1977 1980 1982
 [631] 1974 1973 1979 1982 1982 1984 1973 1983 1982 1972 1975 1974 1975 1979
 [645] 1974 1986 1986 1972 1984 1972 1980 1973 1985 1986 1972 1984 1974 1976
 [659] 1984 1972 1985 1977 1976 1976 1982 1986 1985 1984 1986 1984 1985 1972
 [673] 1979 1982 1982 1978 1973 1984 1976 1974 1976 1984 1975 1972 1975 1972
 [687] 1978 1981 1976 1979 1978 1975 1976 1976 1985 1984 1974 1973 1977 1985
 [701] 1979 1972 1975 1976 1974 1973 1976 1972 1975 1975 1975 1979 1975 1983
 [715] 1977 1979 1977 1981 1983 1986 1986 1982 1983 1973 1975 1977 1976 1983
 [729] 1972 1974 1985 1977 1975 1976 1977 1977 1977 1984 1981 1984 1977 1973
 [743] 1976 1984 1972 1982 1980 1977 1981 1986 1974 1984 1982 1973 1978 1978
 [757] 1983 1981 1974 1982 1974 1972 1975 1981 1979 1979 1979 1975 1975 1981
 [771] 1974 1979 1974 1985 1974 1984 1981 1980 1976 1979 1974 1974 1983 1982
 [785] 1985 1973 1974 1975 1981 1975 1974 1983 1974 1972 1974 1973 1972 1985
 [799] 1974 1973 1974 1985 1973 1978 1986 1977 1979 1975 1973 1973 1980 1975
 [813] 1976 1976 1975 1972 1977 1972 1977 1986 1978 1973 1985 1979 1974 1986
 [827] 1983 1982 1982 1986 1973 1976 1981 1981 1978 1978 1975 1986 1981 1972
 [841] 1976 1978 1986 1983 1973 1973 1976 1982 1982 1977 1977 1978 1984 1977
 [855] 1975 1979 1984 1975 1974 1984 1984 1978 1981 1979 1977 1985 1977 1976
 [869] 1976 1974 1977 1985 1986 1973 1979 1979 1981 1976 1982 1974 1978 1984
 [883] 1979 1980 1977 1985 1984 1979 1983 1983 1981 1981 1982 1974 1986 1986
 [897] 1984 1982 1980 1986 1973 1974 1974 1974 1985 1984 1976 1976 1979 1977
 [911] 1984 1982 1982 1981 1983 1980 1978 1979 1986 1983 1984 1973 1984 1986
 [925] 1976 1975 1978 1980 1986 1986 1977 1977 1977 1977 1973 1984 1973 1986
 [939] 1972 1986 1974 1980 1983 1978 1982 1983 1985 1984 1973 1977 1977 1981
 [953] 1978 1986 1980 1986 1986 1982 1984 1983 1983 1985 1980 1975 1985 1986
 [967] 1983 1974 1984 1973 1983 1975 1979 1986 1977 1983 1977 1973 1974 1977
 [981] 1985 1986 1977 1983 1984 1985 1973 1972 1979 1982 1974 1973 1974 1985
 [995] 1973 1986 1981 1972 1976 1983
attr(,"label")
[1] "問1(2)_生年"
attr(,"format.stata")
[1] "%12.0g"
# 度数を表示
d |> count(ybirth)
# A tibble: 15 × 2
   ybirth     n
    <dbl> <int>
 1   1972    70
 2   1973    81
 3   1974    82
 4   1975    70
 5   1976    76
 6   1977    84
 7   1978    53
 8   1979    54
 9   1980    48
10   1981    70
11   1982    44
12   1983    67
13   1984    67
14   1985    64
15   1986    70
# 度数と割合を表示
d |> tabyl(ybirth)
 ybirth  n percent
   1972 70   0.070
   1973 81   0.081
   1974 82   0.082
   1975 70   0.070
   1976 76   0.076
   1977 84   0.084
   1978 53   0.053
   1979 54   0.054
   1980 48   0.048
   1981 70   0.070
   1982 44   0.044
   1983 67   0.067
   1984 67   0.067
   1985 64   0.064
   1986 70   0.070
# 度数と割合を表示し,tbl形式に
d |> tabyl(ybirth) |> tibble()
# A tibble: 15 × 3
   ybirth     n percent
    <dbl> <int>   <dbl>
 1   1972    70   0.07 
 2   1973    81   0.081
 3   1974    82   0.082
 4   1975    70   0.07 
 5   1976    76   0.076
 6   1977    84   0.084
 7   1978    53   0.053
 8   1979    54   0.054
 9   1980    48   0.048
10   1981    70   0.07 
11   1982    44   0.044
12   1983    67   0.067
13   1984    67   0.067
14   1985    64   0.064
15   1986    70   0.07 

5 変数の加工,選択,処理

dplyrパッケージの4つの関数を使用方法をマスターしよう.

  • count関数
  • summarise関数
  • mutate関数
  • filter関数
  • select関数
library(dplyr)

5.1 新しい変数の作成

d |> mutate(age_2006 = 2006 - ybirth)
# A tibble: 1,000 × 73
   caseid sex        ybirth mbirth ZQ03        JC_1     JC_41    ZQ08A   ZQ08B  
    <dbl> <dbl+lbl>   <dbl>  <dbl> <dbl+lbl>   <dbl+lb> <dbl+lb> <dbl+l> <dbl+l>
 1  10001 1 [male]     1976     10 1 [してい…  2 [正… 12     … 4 [週… 1 [毎…
 2  10002 1 [male]     1972      1 1 [してい…  2 [正…  9     … 6 [ほ… 2 [週…
 3  10003 1 [male]     1975      4 1 [してい…  2 [正…  9     … 6 [ほ… 6 [ほ…
 4  10004 2 [female]   1974     11 1 [してい…  2 [正…  7     … 6 [ほ… 1 [毎…
 5  10005 1 [male]     1978      1 2 [してい… 10 [無… 88 [非… 6 [ほ… 2 [週…
 6  10006 1 [male]     1984      2 2 [してい… 10 [無… 88 [非… 6 [ほ… 1 [毎…
 7  10007 2 [female]   1976      6 1 [してい…  2 [正…  8     … 6 [ほ… 4 [週…
 8  10008 1 [male]     1975      4 1 [してい…  2 [正…  9     … 5 [月… 2 [週…
 9  10009 2 [female]   1985      9 1 [してい…  3 [パ…  5     … 1 [毎… 1 [毎…
10  10010 1 [male]     1972      2 1 [してい…  2 [正…  8     … 6 [ほ… 1 [毎…
# ℹ 990 more rows
# ℹ 64 more variables: ZQ08C <dbl+lbl>, ZQ08D <dbl+lbl>, ZQ08E <dbl+lbl>,
#   ZQ08F <dbl+lbl>, ZQ08G <dbl+lbl>, ZQ08H <dbl+lbl>, ZQ11_A <dbl+lbl>,
#   ZQ11_B <dbl+lbl>, ZQ11_C <dbl+lbl>, ZQ11_D <dbl+lbl>, ZQ11_E <dbl+lbl>,
#   ZQ11_F <dbl+lbl>, ZQ11_G <dbl+lbl>, ZQ11_H <dbl+lbl>, ZQ11_I <dbl+lbl>,
#   ZQ11_J <dbl+lbl>, ZQ11_K <dbl+lbl>, ZQ11_L <dbl+lbl>, ZQ11_M <dbl+lbl>,
#   ZQ11_N <dbl+lbl>, ZQ11_O <dbl+lbl>, ZQ12 <dbl+lbl>, ZQ14_1A <dbl+lbl>, …
d |> mutate(age_2006 = 2006 - ybirth, .before = 1)
# A tibble: 1,000 × 73
   age_2006 caseid sex        ybirth mbirth ZQ03       JC_1     JC_41    ZQ08A  
      <dbl>  <dbl> <dbl+lbl>   <dbl>  <dbl> <dbl+lbl>  <dbl+lb> <dbl+lb> <dbl+l>
 1       30  10001 1 [male]     1976     10 1 [してい…  2 [正… 12     … 4 [週…
 2       34  10002 1 [male]     1972      1 1 [してい…  2 [正…  9     … 6 [ほ…
 3       31  10003 1 [male]     1975      4 1 [してい…  2 [正…  9     … 6 [ほ…
 4       32  10004 2 [female]   1974     11 1 [してい…  2 [正…  7     … 6 [ほ…
 5       28  10005 1 [male]     1978      1 2 [してい… 10 [無… 88 [非… 6 [ほ…
 6       22  10006 1 [male]     1984      2 2 [してい… 10 [無… 88 [非… 6 [ほ…
 7       30  10007 2 [female]   1976      6 1 [してい…  2 [正…  8     … 6 [ほ…
 8       31  10008 1 [male]     1975      4 1 [してい…  2 [正…  9     … 5 [月…
 9       21  10009 2 [female]   1985      9 1 [してい…  3 [パ…  5     … 1 [毎…
10       34  10010 1 [male]     1972      2 1 [してい…  2 [正…  8     … 6 [ほ…
# ℹ 990 more rows
# ℹ 64 more variables: ZQ08B <dbl+lbl>, ZQ08C <dbl+lbl>, ZQ08D <dbl+lbl>,
#   ZQ08E <dbl+lbl>, ZQ08F <dbl+lbl>, ZQ08G <dbl+lbl>, ZQ08H <dbl+lbl>,
#   ZQ11_A <dbl+lbl>, ZQ11_B <dbl+lbl>, ZQ11_C <dbl+lbl>, ZQ11_D <dbl+lbl>,
#   ZQ11_E <dbl+lbl>, ZQ11_F <dbl+lbl>, ZQ11_G <dbl+lbl>, ZQ11_H <dbl+lbl>,
#   ZQ11_I <dbl+lbl>, ZQ11_J <dbl+lbl>, ZQ11_K <dbl+lbl>, ZQ11_L <dbl+lbl>,
#   ZQ11_M <dbl+lbl>, ZQ11_N <dbl+lbl>, ZQ11_O <dbl+lbl>, ZQ12 <dbl+lbl>, …
d <- d |> mutate(age_2006 = 2006 - ybirth)
d |> count(ybirth, age_2006)
# A tibble: 15 × 3
   ybirth age_2006     n
    <dbl>    <dbl> <int>
 1   1972       34    70
 2   1973       33    81
 3   1974       32    82
 4   1975       31    70
 5   1976       30    76
 6   1977       29    84
 7   1978       28    53
 8   1979       27    54
 9   1980       26    48
10   1981       25    70
11   1982       24    44
12   1983       23    67
13   1984       22    67
14   1985       21    64
15   1986       20    70

5.2 変数の選択

d |> select(ybirth)
# A tibble: 1,000 × 1
   ybirth
    <dbl>
 1   1976
 2   1972
 3   1975
 4   1974
 5   1978
 6   1984
 7   1976
 8   1975
 9   1985
10   1972
# ℹ 990 more rows

5.3 変数をベクトルとして取り出す

d |> pull(ybirth)
   [1] 1976 1972 1975 1974 1978 1984 1976 1975 1985 1972 1974 1973 1984 1972
  [15] 1985 1982 1984 1980 1972 1978 1982 1978 1979 1975 1973 1975 1977 1973
  [29] 1983 1976 1983 1977 1978 1978 1975 1986 1986 1975 1980 1981 1977 1984
  [43] 1982 1976 1975 1978 1977 1979 1986 1984 1972 1983 1976 1974 1974 1985
  [57] 1979 1986 1981 1986 1983 1980 1983 1981 1976 1978 1974 1977 1986 1985
  [71] 1985 1977 1974 1976 1983 1985 1973 1986 1973 1982 1980 1973 1983 1980
  [85] 1983 1979 1974 1972 1979 1985 1976 1973 1985 1985 1973 1978 1975 1983
  [99] 1980 1981 1979 1981 1982 1972 1980 1973 1976 1980 1984 1985 1979 1986
 [113] 1975 1986 1983 1974 1979 1972 1981 1974 1973 1980 1980 1981 1973 1972
 [127] 1980 1978 1980 1972 1984 1972 1982 1978 1977 1972 1984 1985 1983 1974
 [141] 1979 1984 1974 1983 1976 1976 1977 1984 1974 1976 1972 1986 1980 1981
 [155] 1975 1973 1986 1975 1981 1985 1983 1984 1983 1974 1980 1981 1976 1977
 [169] 1973 1974 1982 1973 1972 1983 1978 1974 1985 1976 1977 1983 1977 1973
 [183] 1982 1972 1983 1978 1972 1975 1974 1985 1974 1981 1974 1974 1986 1980
 [197] 1974 1977 1973 1979 1986 1979 1977 1976 1975 1985 1978 1975 1973 1978
 [211] 1976 1984 1974 1977 1973 1980 1976 1981 1977 1986 1981 1986 1981 1978
 [225] 1979 1972 1984 1973 1977 1981 1979 1979 1984 1984 1973 1973 1977 1973
 [239] 1972 1978 1977 1981 1984 1981 1972 1981 1976 1977 1985 1986 1983 1981
 [253] 1985 1973 1976 1978 1977 1981 1973 1981 1978 1976 1972 1973 1981 1972
 [267] 1980 1975 1976 1973 1983 1974 1973 1985 1980 1976 1983 1983 1984 1985
 [281] 1975 1983 1981 1972 1986 1984 1972 1972 1984 1981 1974 1984 1979 1974
 [295] 1984 1972 1974 1978 1985 1972 1986 1976 1973 1977 1975 1983 1978 1976
 [309] 1978 1976 1979 1976 1976 1973 1982 1982 1973 1986 1974 1986 1975 1976
 [323] 1976 1979 1981 1981 1977 1985 1976 1972 1975 1976 1980 1981 1979 1973
 [337] 1978 1974 1975 1984 1976 1973 1981 1981 1979 1973 1981 1978 1975 1977
 [351] 1976 1975 1976 1986 1986 1986 1979 1985 1978 1974 1980 1978 1976 1975
 [365] 1984 1983 1979 1985 1985 1984 1981 1976 1974 1981 1983 1973 1977 1975
 [379] 1977 1986 1973 1976 1972 1981 1985 1985 1981 1981 1980 1984 1975 1974
 [393] 1986 1979 1974 1977 1975 1983 1977 1982 1975 1986 1983 1975 1986 1981
 [407] 1974 1983 1972 1985 1980 1979 1976 1974 1977 1972 1985 1975 1979 1980
 [421] 1986 1978 1976 1980 1974 1985 1976 1977 1977 1980 1977 1984 1981 1983
 [435] 1982 1983 1981 1974 1980 1983 1975 1983 1972 1985 1980 1981 1972 1985
 [449] 1981 1977 1976 1976 1984 1976 1972 1983 1986 1983 1976 1981 1981 1983
 [463] 1976 1975 1982 1977 1975 1977 1983 1979 1974 1975 1984 1974 1972 1978
 [477] 1972 1984 1981 1972 1981 1974 1985 1972 1977 1972 1981 1977 1981 1977
 [491] 1975 1973 1978 1972 1973 1986 1985 1985 1972 1976 1979 1972 1972 1973
 [505] 1975 1973 1986 1980 1975 1975 1982 1986 1985 1979 1977 1981 1977 1978
 [519] 1980 1983 1983 1972 1984 1972 1983 1984 1979 1976 1986 1984 1978 1977
 [533] 1983 1974 1977 1973 1980 1980 1973 1982 1975 1974 1973 1977 1981 1972
 [547] 1974 1973 1983 1980 1977 1980 1973 1978 1984 1983 1986 1974 1985 1977
 [561] 1980 1983 1977 1984 1975 1973 1984 1977 1983 1982 1985 1980 1973 1977
 [575] 1973 1973 1979 1975 1982 1985 1982 1982 1977 1984 1974 1982 1978 1974
 [589] 1978 1986 1981 1978 1975 1975 1972 1973 1974 1986 1972 1985 1973 1975
 [603] 1981 1979 1975 1977 1976 1986 1977 1985 1974 1984 1976 1986 1985 1972
 [617] 1973 1972 1985 1976 1981 1986 1978 1974 1977 1980 1978 1977 1980 1982
 [631] 1974 1973 1979 1982 1982 1984 1973 1983 1982 1972 1975 1974 1975 1979
 [645] 1974 1986 1986 1972 1984 1972 1980 1973 1985 1986 1972 1984 1974 1976
 [659] 1984 1972 1985 1977 1976 1976 1982 1986 1985 1984 1986 1984 1985 1972
 [673] 1979 1982 1982 1978 1973 1984 1976 1974 1976 1984 1975 1972 1975 1972
 [687] 1978 1981 1976 1979 1978 1975 1976 1976 1985 1984 1974 1973 1977 1985
 [701] 1979 1972 1975 1976 1974 1973 1976 1972 1975 1975 1975 1979 1975 1983
 [715] 1977 1979 1977 1981 1983 1986 1986 1982 1983 1973 1975 1977 1976 1983
 [729] 1972 1974 1985 1977 1975 1976 1977 1977 1977 1984 1981 1984 1977 1973
 [743] 1976 1984 1972 1982 1980 1977 1981 1986 1974 1984 1982 1973 1978 1978
 [757] 1983 1981 1974 1982 1974 1972 1975 1981 1979 1979 1979 1975 1975 1981
 [771] 1974 1979 1974 1985 1974 1984 1981 1980 1976 1979 1974 1974 1983 1982
 [785] 1985 1973 1974 1975 1981 1975 1974 1983 1974 1972 1974 1973 1972 1985
 [799] 1974 1973 1974 1985 1973 1978 1986 1977 1979 1975 1973 1973 1980 1975
 [813] 1976 1976 1975 1972 1977 1972 1977 1986 1978 1973 1985 1979 1974 1986
 [827] 1983 1982 1982 1986 1973 1976 1981 1981 1978 1978 1975 1986 1981 1972
 [841] 1976 1978 1986 1983 1973 1973 1976 1982 1982 1977 1977 1978 1984 1977
 [855] 1975 1979 1984 1975 1974 1984 1984 1978 1981 1979 1977 1985 1977 1976
 [869] 1976 1974 1977 1985 1986 1973 1979 1979 1981 1976 1982 1974 1978 1984
 [883] 1979 1980 1977 1985 1984 1979 1983 1983 1981 1981 1982 1974 1986 1986
 [897] 1984 1982 1980 1986 1973 1974 1974 1974 1985 1984 1976 1976 1979 1977
 [911] 1984 1982 1982 1981 1983 1980 1978 1979 1986 1983 1984 1973 1984 1986
 [925] 1976 1975 1978 1980 1986 1986 1977 1977 1977 1977 1973 1984 1973 1986
 [939] 1972 1986 1974 1980 1983 1978 1982 1983 1985 1984 1973 1977 1977 1981
 [953] 1978 1986 1980 1986 1986 1982 1984 1983 1983 1985 1980 1975 1985 1986
 [967] 1983 1974 1984 1973 1983 1975 1979 1986 1977 1983 1977 1973 1974 1977
 [981] 1985 1986 1977 1983 1984 1985 1973 1972 1979 1982 1974 1973 1974 1985
 [995] 1973 1986 1981 1972 1976 1983
attr(,"label")
[1] "問1(2)_生年"
attr(,"format.stata")
[1] "%12.0g"

5.4 ケースの選択

d |> filter(ybirth == 1981)
# A tibble: 70 × 73
   caseid sex        ybirth mbirth ZQ03        JC_1     JC_41    ZQ08A   ZQ08B  
    <dbl> <dbl+lbl>   <dbl>  <dbl> <dbl+lbl>   <dbl+lb> <dbl+lb> <dbl+l> <dbl+l>
 1  10040 1 [male]     1981      9 1 [してい…  2 [正… 12     … 4 [週… 1 [毎…
 2  10059 1 [male]     1981      1 1 [してい…  2 [正… 10     … 5 [月… 1 [毎…
 3  10064 1 [male]     1981      2 1 [してい… 12 [学…  1     … 5 [月… 1 [毎…
 4  10100 2 [female]   1981     10 2 [してい… 10 [無… 88 [非… 6 [ほ… 1 [毎…
 5  10102 2 [female]   1981      6 1 [してい…  3 [パ…  8     … 6 [ほ… 3 [週…
 6  10119 2 [female]   1981      6 1 [してい…  3 [パ…  8     … 6 [ほ… 1 [毎…
 7  10124 1 [male]     1981      7 2 [してい… 11 [学… 88 [非… 6 [ほ… 1 [毎…
 8  10154 2 [female]   1981     11 1 [してい…  4 [派…  7     … 6 [ほ… 9 [無…
 9  10159 2 [female]   1981      3 1 [してい…  2 [正…  8     … 6 [ほ… 1 [毎…
10  10166 2 [female]   1981      6 1 [してい…  2 [正… 10     … 6 [ほ… 1 [毎…
# ℹ 60 more rows
# ℹ 64 more variables: ZQ08C <dbl+lbl>, ZQ08D <dbl+lbl>, ZQ08E <dbl+lbl>,
#   ZQ08F <dbl+lbl>, ZQ08G <dbl+lbl>, ZQ08H <dbl+lbl>, ZQ11_A <dbl+lbl>,
#   ZQ11_B <dbl+lbl>, ZQ11_C <dbl+lbl>, ZQ11_D <dbl+lbl>, ZQ11_E <dbl+lbl>,
#   ZQ11_F <dbl+lbl>, ZQ11_G <dbl+lbl>, ZQ11_H <dbl+lbl>, ZQ11_I <dbl+lbl>,
#   ZQ11_J <dbl+lbl>, ZQ11_K <dbl+lbl>, ZQ11_L <dbl+lbl>, ZQ11_M <dbl+lbl>,
#   ZQ11_N <dbl+lbl>, ZQ11_O <dbl+lbl>, ZQ12 <dbl+lbl>, ZQ14_1A <dbl+lbl>, …

5.5 変数名のクリーニング

#janitor::clean_names()