library(tidyverse)
library(gnm)
library(broom)
library(vcdExtra)
library(logmult)
library(knitr)
クロス表
ここでは先行研究で分析されたクロス表のデータをいくつか取り上げます.
Logan (1983) Table 2
入江・菅澤・橋本.2022.『標準 ベイズ統計学』(朝倉書店)のp.27でも用いられているデータ.
<- c(109, 36, 27, 24, 1,
Freq_logan_1983 43, 8, 16, 15, 0,
70, 27, 79, 55, 1,
58, 27, 54, 94, 2,
15, 7, 26, 29, 15
)<- tibble(Freq = Freq_logan_1983,
d_logan O = gl(n = 5, k = 5, length = 5 * 5),
D = gl(n = 5, k = 1, length = 5 * 5))
d_logan
# A tibble: 25 × 3
Freq O D
<dbl> <fct> <fct>
1 109 1 1
2 36 1 2
3 27 1 3
4 24 1 4
5 1 1 5
6 43 2 1
7 8 2 2
8 16 2 3
9 15 2 4
10 0 2 5
# ℹ 15 more rows
xtabs(Freq ~ O + D, data = d_logan)
D
O 1 2 3 4 5
1 109 36 27 24 1
2 43 8 16 15 0
3 70 27 79 55 1
4 58 27 54 94 2
5 15 7 26 29 15
gnmパッケージのデータ
data(package = "gnm")$results |> data.frame() |> select("Item", "Title") |> knitr::kable()
Item | Title |
---|---|
House2001 | Data on twenty roll calls in the US House of Representatives, 2001 |
backPain | Data on Back Pain Prognosis, from Anderson (1984) |
barley | Jenkyn’s Data on Leaf-blotch on Barley |
barleyHeights | Heights of Barley Plants |
cautres | Data on Class, Religion and Vote in France |
erikson | Intergenerational Class Mobility in England/Wales, France and Sweden |
friend | Occupation of Respondents and Their Closest Friend |
mentalHealth | Data on Mental Health and Socioeconomic Status |
voting | Data on Social Mobility and the Labour Vote |
wheat | Wheat Yields from Mexican Field Trials |
yaish | Class Mobility by Level of Education in Israel |
mentalHealth
は本書でも用いられているデータ.erikson
は Erikson, Goldthorpe, and Portocarero (1982) で分析され、その後 Xie (1992) で再分析されている.データは Hauser (1984) のAppendixのものである.
erikson
, , country = EW
destination
origin I II III IVa IVb IVc V/VI VIIa VIIb
I 311 130 79 24 22 7 70 44 1
II 161 128 66 22 11 6 112 47 1
III 128 109 89 26 25 3 197 113 4
IVa 88 83 43 72 41 5 112 64 4
IVb 36 45 38 27 47 3 110 80 4
IVc 43 23 25 16 14 99 86 81 40
V/VI 356 375 325 108 140 5 1506 839 22
VIIa 150 180 187 48 74 9 802 685 15
VIIb 12 14 18 5 18 10 96 114 56
, , country = F
destination
origin I II III IVa IVb IVc V/VI VIIa VIIb
I 105 72 19 9 8 3 26 11 1
II 59 113 37 9 14 0 54 34 2
III 40 86 64 10 20 4 103 61 4
IVa 38 37 17 38 23 2 36 22 1
IVb 40 68 55 38 95 10 92 74 7
IVc 27 74 77 27 52 461 156 286 73
V/VI 36 138 93 22 38 5 339 189 9
VIIa 22 88 79 18 24 8 235 209 11
VIIb 4 18 26 9 14 19 68 107 47
, , country = S
destination
origin I II III IVa IVb IVc V/VI VIIa VIIb
I 52 15 13 3 2 0 11 7 0
II 30 27 14 3 4 0 27 12 2
III 10 19 10 2 4 0 16 11 1
IVa 26 24 5 20 8 1 33 22 0
IVb 8 13 6 3 9 4 31 20 1
IVc 24 47 44 17 22 92 132 144 21
V/VI 33 89 40 13 18 5 188 104 5
VIIa 32 49 28 14 17 5 159 109 4
VIIb 5 10 3 0 6 3 33 42 8
<- data.frame(erikson) |> tibble()
d_erikson d_erikson
# A tibble: 243 × 4
origin destination country Freq
<fct> <fct> <fct> <dbl>
1 I I EW 311
2 II I EW 161
3 III I EW 128
4 IVa I EW 88
5 IVb I EW 36
6 IVc I EW 43
7 V/VI I EW 356
8 VIIa I EW 150
9 VIIb I EW 12
10 I II EW 130
# ℹ 233 more rows
vcdExtraパッケージのデータ
data(package = "vcdExtra")$results |> data.frame() |> select("Item", "Title") |> knitr::kable()
Item | Title |
---|---|
Abortion | Abortion Opinion Data |
Accident | Traffic Accident Victims in France in 1958 |
AirCrash | Air Crash Data |
Alligator | Alligator Food Choice |
Asbestos | Effect of Exposure to Asbestos |
Bartlett | Bartlett Data on Plum Root Cuttings |
Burt | Burt (1950) Data on Hair, Eyes, Head and Stature |
Caesar | Risk Factors for Infection in Caesarian Births |
Cancer | Survival of Breast Cancer Patients |
Cormorants | Advertising Behavior by Males Cormorants |
CyclingDeaths | London Cycling Deaths |
DaytonSurvey | Dayton Student Survey on Substance Use |
Depends | Dependencies of R Packages |
Detergent | Detergent preference data |
Donner | Survival in the Donner Party |
Draft1970 | USA 1970 Draft Lottery Data |
Draft1970table | USA 1970 Draft Lottery Table |
Dyke | Sources of Knowledge of Cancer |
Fungicide | Carcinogenic Effects of a Fungicide |
GSS | General Social Survey- Sex and Party affiliation |
Geissler | Geissler’s Data on the Human Sex Ratio |
Gilby | Clothing and Intelligence Rating of Children |
Glass | British Social Mobility from Glass(1954) |
HairEyePlace | Hair Color and Eye Color in Caithness and Aberdeen |
Hauser79 | Hauser (1979) Data on Social Mobility |
Heart | Sex, Occupation and Heart Disease |
Heckman | Labour Force Participation of Married Women 1967-1971 |
HospVisits | Hospital Visits Data |
HouseTasks | Household Tasks Performed by Husbands and Wives |
Hoyt | Minnesota High School Graduates |
ICU | ICU data set |
JobSat | Cross-classification of job satisfaction by income |
Mammograms | Mammogram Ratings |
Mental | Mental Impairment and Parents SES |
Mice | Mice Depletion Data |
Mobility | Social Mobility data |
PhdPubs | Publications of PhD Candidates |
ShakeWords | Shakespeare’s Word Type Frequencies |
TV | TV Viewing Data |
Titanicp | Passengers on the Titanic |
Toxaemia | Toxaemia Symptoms in Pregnancy |
Vietnam | Student Opinion about the Vietnam War |
Vote1980 | Race and Politics in the 1980 Presidential Vote |
WorkerSat | Worker Satisfaction Data |
Yamaguchi87 | Occupational Mobility in Three Countries |
Hauser79
は Hauser (1980) で用いられたもの(Table 1. Counts in a Classification of Mobility from Father’s (or Other Family Head’s) Occupation to Son’s First Full-Time Civilian Occupation: U.S. Men Aged 20-64 in 1973).
Hauser79
Son Father Freq
1 UpNM UpNM 1414
2 LoNM UpNM 521
3 UpM UpNM 302
4 LoM UpNM 643
5 Farm UpNM 40
6 UpNM LoNM 724
7 LoNM LoNM 524
8 UpM LoNM 254
9 LoM LoNM 703
10 Farm LoNM 48
11 UpNM UpM 798
12 LoNM UpM 648
13 UpM UpM 856
14 LoM UpM 1676
15 Farm UpM 108
16 UpNM LoM 756
17 LoNM LoM 914
18 UpM LoM 771
19 LoM LoM 3325
20 Farm LoM 237
21 UpNM Farm 409
22 LoNM Farm 357
23 UpM Farm 441
24 LoM Farm 1611
25 Farm Farm 1832
<- xtabs(Freq ~ Father + Son, data = Hauser79)
tab_Hauser79 tab_Hauser79
Son
Father UpNM LoNM UpM LoM Farm
UpNM 1414 521 302 643 40
LoNM 724 524 254 703 48
UpM 798 648 856 1676 108
LoM 756 914 771 3325 237
Farm 409 357 441 1611 1832
Yamaguchi87
は Yamaguchi (1987) で用いられた,アメリカ,イギリス,日本の3ヶ国のデータ.Goodman et al. (1998) や@xie1992でも再分析されている.
Yamaguchi87
Son Father Country Freq
1 UpNM UpNM US 1275
2 LoNM UpNM US 364
3 UpM UpNM US 274
4 LoM UpNM US 272
5 Farm UpNM US 17
6 UpNM LoNM US 1055
7 LoNM LoNM US 597
8 UpM LoNM US 394
9 LoM LoNM US 443
10 Farm LoNM US 31
11 UpNM UpM US 1043
12 LoNM UpM US 587
13 UpM UpM US 1045
14 LoM UpM US 951
15 Farm UpM US 47
16 UpNM LoM US 1159
17 LoNM LoM US 791
18 UpM LoM US 1323
19 LoM LoM US 2046
20 Farm LoM US 52
21 UpNM Farm US 666
22 LoNM Farm US 496
23 UpM Farm US 1031
24 LoM Farm US 1632
25 Farm Farm US 646
26 UpNM UpNM UK 474
27 LoNM UpNM UK 129
28 UpM UpNM UK 87
29 LoM UpNM UK 124
30 Farm UpNM UK 11
31 UpNM LoNM UK 300
32 LoNM LoNM UK 218
33 UpM LoNM UK 171
34 LoM LoNM UK 220
35 Farm LoNM UK 8
36 UpNM UpM UK 438
37 LoNM UpM UK 254
38 UpM UpM UK 669
39 LoM UpM UK 703
40 Farm UpM UK 16
41 UpNM LoM UK 601
42 LoNM LoM UK 388
43 UpM LoM UK 932
44 LoM LoM UK 1789
45 Farm LoM UK 37
46 UpNM Farm UK 76
47 LoNM Farm UK 56
48 UpM Farm UK 125
49 LoM Farm UK 295
50 Farm Farm UK 191
51 UpNM UpNM Japan 127
52 LoNM UpNM Japan 101
53 UpM UpNM Japan 24
54 LoM UpNM Japan 30
55 Farm UpNM Japan 12
56 UpNM LoNM Japan 86
57 LoNM LoNM Japan 207
58 UpM LoNM Japan 64
59 LoM LoNM Japan 61
60 Farm LoNM Japan 13
61 UpNM UpM Japan 43
62 LoNM UpM Japan 73
63 UpM UpM Japan 122
64 LoM UpM Japan 60
65 Farm UpM Japan 13
66 UpNM LoM Japan 35
67 LoNM LoM Japan 51
68 UpM LoM Japan 62
69 LoM LoM Japan 66
70 Farm LoM Japan 11
71 UpNM Farm Japan 109
72 LoNM Farm Japan 206
73 UpM Farm Japan 184
74 LoM Farm Japan 253
75 Farm Farm Japan 325
<- xtabs(Freq ~ Father + Son + Country, data = Yamaguchi87)
tab_Yamaguchi87 tab_Yamaguchi87
, , Country = US
Son
Father UpNM LoNM UpM LoM Farm
UpNM 1275 364 274 272 17
LoNM 1055 597 394 443 31
UpM 1043 587 1045 951 47
LoM 1159 791 1323 2046 52
Farm 666 496 1031 1632 646
, , Country = UK
Son
Father UpNM LoNM UpM LoM Farm
UpNM 474 129 87 124 11
LoNM 300 218 171 220 8
UpM 438 254 669 703 16
LoM 601 388 932 1789 37
Farm 76 56 125 295 191
, , Country = Japan
Son
Father UpNM LoNM UpM LoM Farm
UpNM 127 101 24 30 12
LoNM 86 207 64 61 13
UpM 43 73 122 60 13
LoM 35 51 62 66 11
Farm 109 206 184 253 325
logmult パッケージのデータ
data(package = "logmult")$results |> data.frame() |> select("Item", "Title") |> knitr::kable()
Item | Title |
---|---|
color | Two Cross-Classifications of Eye Color by Hair Color |
criminal | Dropped Criminal Charges, Denmark, 1955-1958 |
gss7590 | Education and Occupational Attainment Among White Men and Women in the United States, 1975-1990 |
gss8590 | Education and Occupational Attainment Among Women in the United States, 1985-1990 |
gss88 | Major Occupation by Years of Schooling in the United States, 1988 |
hg16 | Son’s occupation by father’s occupation for 16 countries in the 1960s and 1970s |
ocg1973 | Intergenerational Mobility in the United States, 1973 |
参考文献
Erikson, Robert, John H. Goldthorpe, and Lucienne Portocarero. 1982. “Social Fluidity in Industrial Nations: England, France and Sweden.” The British Journal of Sociology 33 (1): 1–34. https://doi.org/10.2307/589335.
Goodman, Leo A., Michael Hout, Yu Xie, and Kazuo Yamaguchi. 1998. “Statistical Methods and Graphical Displays for Analyzing How the Association Between Two Qualitative Variables Differs Among Countries, Among Groups, or over Time: A Modified Regression-Type Approach / Comments / Rejoinder.” Sociological Methodology 28: 175.
Hauser, Robert M. 1980. “Some Exploratory Methods for Modeling Mobility Tables and Other Cross-Classified Data.” Sociological Methodology 11: 413. https://doi.org/10.2307/270871.
———. 1984. “Vertical Class Mobility in England, France, and Sweden.” Acta Sociologica (Taylor & Francis Ltd) 27 (2): 87–110. https://doi.org/10.1177/000169938402700201.
Xie, Yu. 1992. “The Log-Multiplicative Layer Effect Model for Comparing Mobility Tables.” American Sociological Review 57 (3): 380–95. https://doi.org/10.2307/2096242.
Yamaguchi, Kazuo. 1987. “Models for Comparing Mobility Tables: Toward Parsimony and Substance.” American Sociological Review 52 (4): 482–94. https://doi.org/10.2307/2095293.